If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6.6x^2+15x+140=0
a = -6.6; b = 15; c = +140;
Δ = b2-4ac
Δ = 152-4·(-6.6)·140
Δ = 3921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{3921}}{2*-6.6}=\frac{-15-\sqrt{3921}}{-13.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{3921}}{2*-6.6}=\frac{-15+\sqrt{3921}}{-13.2} $
| -10-4v=7+9v+9 | | -5(-4v-18)=5(2v+10) | | 12-3(8+10v)=6(v+3)+6 | | -6.6x^2+15x-140=0 | | -18-3x=57 | | (2-7x+11)x2-13x+42=1 | | 1/6+2/3=15x | | -10w-6=-6w+10 | | 1/6x+2/3=15 | | (2y+7)(8y–7)=80y2–210y–245 | | 5(6)^x=25 | | 5j+7=2j-8 | | 2x+20=−3x–5 | | 8e+64=160 | | 7z+2=–8–3z | | 4t+14=–14 | | 7h-5=4h+7+h | | 7e+49=140 | | 8x2+80x=−5 | | −x−10=5x+8 | | 13y=9y+32 | | −2(x−13)=-22 | | -2-4m=-3m-9 | | −2+x=−5–5x | | -2f+8=-3f | | 12x-25-(5-3x)=0 | | –55=–6q+q | | 7)2x+6=10 | | 4x2−27x−40=0 | | 17-8p=32 | | x−–13=31 | | y–19=–31 |